Radioactive Isotopes

Friday, October 14, 2011

What are radioisotopes?

Many of the chemical elements have a number of isotopes. The isotopes of an element have the same number of protons in their atoms (atomic number) but different masses due to different numbers of neutrons. In an atom in the neutral state, the number of external electrons also equals the atomic number. These electrons determine the chemistry of the atom. The atomic mass is the sum of the protons and neutrons. There are 82 stable elements and about 275 stable isotopes of these elements.

When a combination of neutrons and protons, which does not already exist in nature, is produced artificially, the atom will be unstable and is called a radioactive isotope or radioisotope. There are also a number of unstable natural isotopes arising from the decay of primordial uranium and thorium. Overall there are some 1800 radioisotopes.

At present there are up to 200 radioisotopes used on a regular basis, and most must be produced artificially.

Radioisotopes can be manufactured in several ways. The most common is by neutron activation in a nuclear reactor. This involves the capture of a neutron by the nucleus of an atom resulting in an excess of neutrons (neutron rich). Some radioisotopes are manufactured in a cyclotron in which protons are introduced to the nucleus resulting in a deficiency of neutrons (proton rich).

The nucleus of a radioisotope usually becomes stable by emitting an alpha and/or beta particle (or positron). These particles may be accompanied by the emission of energy in the form of electromagnetic radiation known as gamma rays. This process is known as radioactive decay.

Radioactive products which are used in medicine are referred to as radiopharmaceuticals.

-sources-

Types of radioactive isotopes by origin


1) Long-lived radioactive nuclides

Some radioactive nuclides that have very long half lives were created during the formation of the solar system (~4.6 billion years ago) and are still present in the earth. These include 40K (t½ = 1.28 billion years), 87Rb (t½ = 48.8 billion years), 238U (t½ = 447 billion years), and 186Os (t½ = 2 x 106 billion years, or 2 million billion years).

2) Cosmogenic

Cosmogenic isotopes are a result of cosmic ray activity in the atmosphere. Cosmic rays are atomic particles that are ejected from stars at a rate of speed sufficient to shatter other atoms when they collide. This process of transformation is called spallation. Some of the resulting fragments produced are unstable atoms having a different atomic structure (and atomic number), and so are isotopes of another element. The resulting atoms are considered to have cosmogenic radioactivity. Cosmogenic isotopes are also produced at the surface of the earth by direct cosmic ray irradiation of atoms in solid geologic materials.

Examples of cosmogenic nuclides include 14C, 36Cl, 3H, 32Si, and 10Be. Cosmogenic nuclides, since they are produced in the atmosphere or on the surface of the earth and have relatively short half-lives (10 to 30,000 years), are often used for age dating of waters.

3) Anthropogenic

Anthropogenic isotopes result from human activities, such as the processing of nuclear fuels, reactor accidents, and nuclear weapons testing. Such testing in the 1950s and 1960s greatly increased the amounts of tritium (3H) and 14C in the atmosphere; tracking these isotopes in the deep ocean, for instance, allows oceanographers to study ocean flow, currents, and rates of sedimentation. Likewise, in hydrology it allows for the tracking of recent groundwater recharge and flow rates in the vadose zone. Examples of hydrologically useful anthropogenic isotopes include many of the cosmogenic isotopes mentioned above: 3H, 14C, 36Cl, and 85Kr.

4) Radiogenic

Radiogenic isotopes are typically stable daughter isotopes produced from radioactive decay. In the geosciences, radiogenic isotopes help to determine the nature and timing of geological events and processes. Isotopic systems useful in this research are primarily K-Ar, Rb-Sr, Re-Os, Sm-Nd, U-Th-Pb, and the noble gases (4H, 3H-3He, 40Ar).

Because of their stable evolution in groundwater, such naturally occurring isotopes are useful hydrologic tracers, allowing evaluation of large geographic areas to determine flowpaths and flow rates. Consequently, they are helpful in building models that predict fracturing, aquifer thickness, and other subterranean features.


http://www.sahra.arizona.edu/